python之pytorch手写数字图片识别的实现方法
内容摘要
这篇文章主要为大家详细介绍了python之pytorch手写数字图片识别的实现方法,具有一定的参考价值,可以用来参考一下。
文章正文
这篇文章主要为大家详细介绍了python之pytorch手写数字图片识别的实现方法,具有一定的参考价值,可以用来参考一下。
数据集:MNIST数据集,代码中会自动下载,不用自己手动下载。数据集很小,不需要GPU设备,可以很好的体会到pytorch的魅力。模型+训练+预测程序:
代码如下:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 | <code> import torch from torch import nn from torch.nn import functional as F from torch import optim import torchvision from matplotlib import pyplot as plt from utils import plot_image, plot_curve, one_hot # step1 load dataset batch_size = 512 train_loader = torch.utils.data.DataLoader( torchvision.datasets.MNIST( 'mnist_data' , train=True, download=True, transform=torchvision.transforms.Compose([ torchvision.transforms.ToTensor(), torchvision.transforms.Normalize( (0.1307,), (0.3081,) ) ])), batch_size=batch_size, shuffle=True) test_loader = torch.utils.data.DataLoader( torchvision.datasets.MNIST( 'mnist_data/' , train=False, download=True, transform=torchvision.transforms.Compose([ torchvision.transforms.ToTensor(), torchvision.transforms.Normalize( (0.1307,), (0.3081,) ) ])), batch_size=batch_size, shuffle=False) x , y = next(iter(train_loader)) print (x.shape, y.shape, x.min(), x.max()) plot_image(x, y, "image_sample" ) class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.fc1 = nn.Linear(28*28, 256) self.fc2 = nn.Linear(256, 64) self.fc3 = nn.Linear(64, 10) def forward(self, x): # x: [b, 1, 28, 28] # h1 = relu(xw1 + b1) x = F.relu(self.fc1(x)) # h2 = relu(h1w2 + b2) x = F.relu(self.fc2(x)) # h3 = h2w3 + b3 x = self.fc3(x) return x net = Net() optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.9) train_loss = [] for epoch in range(3): for batch_idx, (x, y) in enumerate(train_loader): #加载进来的图片是一个四维的tensor,x: [b, 1, 28, 28], y:[512] #但是我们网络的输入要是一个一维向量(也就是二维tensor),所以要进行展平操作 x = x.view(x.size(0), 28*28) # [b, 10] out = net(x) y_onehot = one_hot(y) # loss = mse(out, y_onehot) loss = F.mse_loss(out, y_onehot) optimizer.zero_grad() loss.backward() # w' = w - lr*grad optimizer.step() train_loss.append(loss.item()) if batch_idx % 10 == 0: print (epoch, batch_idx, loss.item()) plot_curve(train_loss) # we get optimal [w1, b1, w2, b2, w3, b3] total_correct = 0 for x,y in test_loader: x = x.view(x.size(0), 28*28) out = net(x) # out: [b, 10] pred = out.argmax(dim=1) correct = pred.eq(y).sum().float().item() total_correct += correct total_num = len(test_loader.dataset) acc = total_correct/total_num print ( "acc:" , acc) x, y = next(iter(test_loader)) out = net(x.view(x.size(0), 28*28)) pred = out.argmax(dim=1) plot_image(x, pred, "test" )</code> |
pytorch实现手写数字图片识别
主程序中调用的函数(注意命名为utils):
代码如下:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | <code> import torch from matplotlib import pyplot as plt def plot_curve(data): fig = plt.figure() plt.plot(range(len(data)), data, color= 'blue' ) plt.legend([ 'value' ], loc= 'upper right' ) plt.xlabel( 'step' ) plt.ylabel( 'value' ) plt.show() def plot_image(img, label, name): fig = plt.figure() for i in range(6): plt.subplot(2, 3, i + 1) plt.tight_layout() plt.imshow(img[i][0]*0.3081+0.1307, cmap= 'gray' , interpolation= 'none' ) plt.title( "{}: {}" .format(name, label[i].item())) plt.xticks([]) plt.yticks([]) plt.show() def one_hot(label, depth=10): out = torch.zeros(label.size(0), depth) idx = torch.LongTensor(label).view(-1, 1) out.scatter_(dim=1, index=idx, value=1) return out</code> |
pytorch实现手写数字图片识别
打印出损失下降的曲线图:
训练3个epoch之后,在测试集上的精度就可以89%左右,可见模型的准确度还是很不错的。输出六张测试集的图片以及预测结果:
六张图片的预测全部正确。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持php教程。
注:关于python之pytorch手写数字图片识别的实现方法的内容就先介绍到这里,更多相关文章的可以留意
代码注释