python之pandas中DataFrame重置索引的几种示例
内容摘要
这篇文章主要为大家详细介绍了python之pandas中DataFrame重置索引的几种示例,具有一定的参考价值,可以用来参考一下。
感兴趣的小伙伴,下面一起跟随php教程的雯雯来看看吧!
在p
感兴趣的小伙伴,下面一起跟随php教程的雯雯来看看吧!
在p
文章正文
这篇文章主要为大家详细介绍了python之pandas中DataFrame重置索引的几种示例,具有一定的参考价值,可以用来参考一下。
感兴趣的小伙伴,下面一起跟随php教程的雯雯来看看吧!
在pandas中,经常对数据进行处理 而导致数据索引顺序混乱,从而影响数据读取、插入等。
小笔总结了以下几种重置索引的方法:
代码如下:
import pandas as pd
import numpy as np
df = pd.DataFrame(np.arange(20).reshape((5, 4)),columns=['a', 'b', 'c', 'd'])
#得到df:
a b c d
0 0 1 2 3
1 4 5 6 7
2 8 9 10 11
3 12 13 14 15
4 16 17 18 19
# 对其重排顺序,得到索引顺序倒序的数据
df2 = df.sort_values('a', ascending=False)
# 得到df2:
a b c d
4 16 17 18 19
3 12 13 14 15
2 8 9 10 11
1 4 5 6 7
0 0 1 2 3
pandas中DataFrame重置索引的几种方法
下面对df2重置索引,使其索引从0开始
法一:
简单粗暴:
代码如下:
df2.index = range(len(df2))
# 输出df2:
a b c d
0 16 17 18 19
1 12 13 14 15
2 8 9 10 11
3 4 5 6 7
4 0 1 2 3
pandas中DataFrame重置索引的几种方法
法二:
代码如下:
df2 = df2.reset_index(drop=True) # drop=True表示删除原索引,不然会在数据表格中新生成一列'index'数据
# 输出df2:
a b c d
0 16 17 18 19
1 12 13 14 15
2 8 9 10 11
3 4 5 6 7
4 0 1 2 3
pandas中DataFrame重置索引的几种方法
法三:
代码如下:
df2 = df2.reindex(labels=range(len(df)) #labels是第一个参数,可以省略
# 输出df2
a b c d
0 16 17 18 19
1 12 13 14 15
2 8 9 10 11
3 4 5 6 7
4 0 1 2 3
# 注:df = df.reindex(index=[]),在原数据结构上新建行(index是新索引,若新建数据索引在原数据中存在,则引用原有数据),默认用NaN填充(使用fill_value=0 来修改填充值自定义,此处我设置的是0)。
# df = df.reindex(columns=[]),在原数据结构上新建列,方法与新建行一样
pandas中DataFrame重置索引的几种方法
法四:
代码如下:
df2 = df2.set_index(keys=['a', 'c']) # 将原数据a, c列的数据作为索引。
# drop=True,默认,是将数据作为索引后,在表格中删除原数据
# append=False,默认,是将新设置的索引设置为内层索引,原索引是外层索引
# 输出df2,注意a,c列是索引:
b d
a c
16 18 17 19
12 14 13 15
8 10 9 11
4 6 5 7
0 2 1 3
pandas中DataFrame重置索引的几种方法
到此这篇关于pandas中DataFrame重置索引的几种方法的文章就介绍到这了,更多相关pandas DataFrame重置索引内容请搜索php教程以前的文章或继续浏览下面的相关文章希望大家以后多多支持php教程!
注:关于python之pandas中DataFrame重置索引的几种示例的内容就先介绍到这里,更多相关文章的可以留意
代码注释