机器学习Python之AdaBoost算法的深入分析

内容摘要
这篇文章主要为大家详细介绍了机器学习Python之AdaBoost算法的深入分析,具有一定的参考价值,可以用来参考一下。

感兴趣的小伙伴,下面一起跟随php教程的雯雯来看看吧!
一、算法
文章正文

这篇文章主要为大家详细介绍了机器学习Python之AdaBoost算法的深入分析,具有一定的参考价值,可以用来参考一下。

感兴趣的小伙伴,下面一起跟随php教程的雯雯来看看吧!

一、算法概述

  • AdaBoost 是英文 Adaptive Boosting(自适应增强)的缩写,由 Yoav Freund 和Robert Schapire 在1995年提出。
  • AdaBoost 的自适应在于前一个基本分类器分类错误的样本的权重会得到加强,加强后的全体样本再次被用来训练下一个基本分类器。同时,在每一轮训练中加入一个新的弱分类器,直到达到某个预定的足够小的错误率或达到预先指定的最大迭代次数时停止训练。
  • AdaBoost 算法是一种集成学习的算法,其核心思想就是对多个机器学习模型进行组合形成一个精度更高的模型,参与组合的模型称为弱学习器。

二、算法原理

  • AdaBoost 的核心思想是针对同一训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强大的最终分类器(强分类器)。也 就是通过一些手段获得多个弱分类器,将它们集成起来构成强分类器,综合所有分类器的预测得出最终的结果。
  • AdaBoost 算法本身是通过改变数据分布来实现的,它根据每次训练集中每个样本的分类是否正确,以及上次的总体分类的准确率,来确定每个样本的权值。将修改过权值的新数据集送给下层分类器进行训练,最后将每次训练得到的分类器最后融合起来,作为最后的决策分类器。

三、算法步骤

1.初始化训练数据的权值分布,每一个训练样本最开始时都被赋予相同的权值 1/n

2.进行多轮迭代,用 m = 1,2,…,k 表示迭代到第几轮

3.使用具有权值分布 Gm 的训练数据集学习,得到基本分类器

4.计算 Gm(x) 在训练数据集上的分类误差率

5.计算 Gm(x) 的系数,am表示 Gm(x) 在最终分类器中的重要程度

6.更新训练数据集的权值分布,得到样本的新的权值分布,用于下一轮迭代

7.组合各个弱分类器

四、算法实现

代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
<code>
from numpy import *
import matplotlib.pyplot as plt
 
 
# 加载数据集
def loadDataSet(fileName):
    numFeat = len(open(fileName).readline().split('\t'))
    dataMat = []
    labelMat = []
    fr = open(fileName)
    for line in fr.readlines():
        lineArr = []
        curLine = line.strip().split('\t')
        for i in range(numFeat - 1):
            lineArr.append(float(curLine[i]))
        dataMat.append(lineArr)
        labelMat.append(float(curLine[-1]))
    return dataMat, labelMat
 
 
# 返回分类预测结果  根据阈值所以有两种返回情况
def stumpClassify(dataMatrix, dimen, threshVal, threshIneq):
    retArray = ones((shape(dataMatrix)[0], 1))
    if threshIneq == 'lt':
        retArray[dataMatrix[:, dimen] <= threshVal] = -1.0
    else:
        retArray[dataMatrix[:, dimen] > threshVal] = -1.0
    return retArray
 
 
# 返回 该弱分类器单层决策树的信息  更新D向量的错误率 更新D向量的预测目标
def buildStump(dataArr, classLabels, D):
    dataMatrix = mat(dataArr)
    labelMat = mat(classLabels).T
    m, n = shape(dataMatrix)
    numSteps = 10.0
    bestStump = {}  # 字典用于保存每个分类器信息
    bestClasEst = mat(zeros((m, 1)))
    minError = inf  # 初始化最小误差最大
    for i in range(n):  # 特征循环  (三层循环,遍历所有的可能性)
        rangeMin = dataMatrix[:, i].min()
        rangeMax = dataMatrix[:, i].max()
        stepSize = (rangeMax - rangeMin) / numSteps  # (大-小)/分割数  得到最小值到最大值需要的每一段距离
        for j in range(-1, int(numSteps) + 1):  # 遍历步长 最小值到最大值的需要次数
            for inequal in ['lt', 'gt']:  # 在大于和小于之间切换
                threshVal = (rangeMin + float(j) * stepSize)  # 最小值+次数*步长  每一次从最小值走的长度
                predictedVals = stumpClassify(dataMatrix, i, threshVal,
                                              inequal)  # 最优预测目标值  用于与目标值比较得到误差
                errArr = mat(ones((m, 1)))
                errArr[predictedVals == labelMat] = 0
                weightedError = D.T * errArr
                if weightedError < minError:  # 选出最小错误的那个特征
                    minError = weightedError  # 最小误差 后面用来更新D权值的
                    bestClasEst = predictedVals.copy()  # 最优预测值
 
                    bestStump['dim'] = i  # 特征
                    bestStump['thresh'] = threshVal  # 到最小值的距离 (得到最优预测值的那个距离)
                    bestStump['ineq'] = inequal  # 大于还是小于 最优距离为-1
    return bestStump, minError, bestClasEst
 
 
# 循环构建numIt个弱分类器
def adaBoostTrainDS(dataArr, classLabels, numIt=40):
    weakClassArr = []  # 保存弱分类器数组
    m = shape(dataArr)[0]
    D = mat(ones((m, 1)) / m)  # D向量 每条样本所对应的一个权重
    aggClassEst = mat(zeros((m, 1)))  # 统计类别估计累积值
    for i in range(numIt):
        bestStump, error, classEst = buildStump(dataArr, classLabels, D)
        alpha = float(0.5 * log((1.0 - error) / max(error, 1e-16)))
        bestStump['alpha'] = alpha
        weakClassArr.append(bestStump)  # 加入单层决策树
 
        # 得到运算公式中的向量+/-α,预测正确为-α,错误则+α。每条样本一个α
        # multiply对应位置相乘  这里很聪明,用-1*真实目标值*预测值,实现了错误分类则-,正确则+
        expon = multiply(-1 * alpha * mat(classLabels).T, classEst)
        D = multiply(D, exp(expon))  # 这三步为更新概率分布D向量 拆分开来了,每一步与公式相同
        D = D / D.sum()
 
        # 计算停止条件错误率=0 以及计算每次的aggClassEst类别估计累计值
        aggClassEst += alpha * classEst
        # 很聪明的计算方法 计算得到错误的个数,向量中为1则错误值
        aggErrors = multiply(sign(aggClassEst) != mat(classLabels).T, ones((m, 1)))  # sign返回数值的正负符号,以1、-1表示
        errorRate = aggErrors.sum() / m  # 错误个数/总个数
        # print("错误率:", errorRate)
        if errorRate == 0.0:
            break
    return weakClassArr, aggClassEst
 
 
# 预测 累加 多个弱分类器获得预测值*该alpha 得到结果
def adaClassify(datToClass, classifierArr):  # classifierArr是元组,所以在取值时需要注意
    dataMatrix = mat(datToClass)
    m = shape(dataMatrix)[0]
    aggClassEst = mat(zeros((m, 1)))
    # 循环所有弱分类器
    for i in range(len(classifierArr[0])):
        # 获得预测结果
        classEst = stumpClassify(dataMatrix, classifierArr[0][i]['dim'], classifierArr[0][i]['thresh'],
                                 classifierArr[0][i]['ineq'])
        # 该分类器α*预测结果 用于累加得到最终的正负判断条件
        aggClassEst += classifierArr[0][i]['alpha'] * classEst  # 这里就是集合所有弱分类器的意见,得到最终的意见
    return sign(aggClassEst)  # 提取数据符号
 
# ROC曲线,类别累计值、目标标签
def plotROC(predStrengths, classLabels):
    cur = (1.0, 1.0)  # 每次画线的起点游标点
    ySum = 0.0  # 用于计算AUC的值 矩形面积的高度累计值
    numPosClas = sum(array(classLabels) == 1.0)  # 所有真实正例    确定了在y坐标轴上的步进数目
    yStep = 1 / float(numPosClas)  # 1/所有真实正例 y轴上的步长
    xStep = 1 / float(len(classLabels) - numPosClas)  # 1/所有真实反例 x轴上的步长
    sortedIndicies = predStrengths.argsort()  # 获得累计值向量从小到大排序的下表index [50,88,2,71...]
    fig = plt.figure()
    fig.clf()
    ax = plt.subplot(111)
    # 循环所有的累计值 从小到大
    for index in sortedIndicies.tolist()[0]:
        if classLabels[index] == 1.0:
            delX = 0  # 若为一个真正例,则沿y降一个步长,即不断降低真阳率;
            delY = yStep  # 若为一个非真正例,则沿x退一个步长,尖笑阳率
        else:
            delX = xStep
            delY = 0
            ySum += cur[1]  # 向下移动一次,则累计一个高度。宽度不变,我们只计算高度
        ax.plot([cur[0], cur[0] - delX], [cur[1], cur[1] - delY], c='b')  # 始终会有一个点是没有改变的
        cur = (cur[0] - delX, cur[1] - delY)
    ax.plot([0, 1], [0, 1], 'b--')
    plt.xlabel('False positive rate')
    plt.ylabel('True positive rate')
    plt.title('ROC curve for AdaBoost horse colic detection system')
    ax.axis([0, 1, 0, 1])
    plt.show()
    print("the Area Under the Curve is: ", ySum * xStep)  # AUC面积我们以 高*低 的矩形来计算
 
 
# 测试正确率
datArr, labelArr = loadDataSet('horseColicTraining2.txt')
classifierArr = adaBoostTrainDS(datArr, labelArr, 15)
 
testArr, testLabelArr = loadDataSet('horseColicTest2.txt')
prediction10 = adaClassify(testArr, classifierArr)
 
errArr = mat(ones((67, 1)))  # 一共有67个样本
cnt = errArr[prediction10 != mat(testLabelArr).T].sum()
print(cnt / 67)
 
# 画出ROC曲线
datArr, labelArr = loadDataSet('horseColicTraining2.txt')
classifierArray, aggClassEst = adaBoostTrainDS(datArr, labelArr, 10)
plotROC(aggClassEst.T, labelArr)
</code>

Python机器学习之AdaBoost算法

五、算法优化

  • 权值更新方法的改进

在实际训练过程中可能存在正负样本失衡的问题,分类器会过于关注大容量样本,导致分类器不能较好地完成区分小样本的目的。此时可以适度增大小样本的权重使重心达到平衡。在实际训练中还会出现困难样本权重过高而发生过拟合的问题,因此有必要设置困难样本分类的权值上限。

  • 训练方法的改进

AdaBoost算法由于其多次迭代训练分类器的原因,训练时间一般会比别的分类器长。对此一般可以采用实现AdaBoost的并行计算或者训练过程中动态剔除掉权重偏小的样本以加速训练过程。

  • 多算法结合的改进

除了以上算法外,AdaBoost还可以考虑与其它算法结合产生新的算法,如在训练过程中使用SVM算法加速挑选简单分类器来替代原始AdaBoost中的穷举法挑选简单的分类器。

到此这篇关于Python机器学习之AdaBoost算法的文章就介绍到这了,更多相关Python AdaBoost算法内容请搜索php教程以前的文章或继续浏览下面的相关文章希望大家以后多多支持php教程!

注:关于机器学习Python之AdaBoost算法的深入分析的内容就先介绍到这里,更多相关文章的可以留意

代码注释

作者:喵哥笔记

IDC笔记

学的不仅是技术,更是梦想!