C语言中的函数指针基础学习教程

内容摘要
顾名思义,函数指针就是函数的指针。它是一个指针,指向一个函数。看例子:
A)


char * (*fun1)(char * p1,char * p2);


B)


char * *fun2(char * p1,char * p2);


C)


char
文章正文

顾名思义,函数指针就是函数的指针。它是一个指针,指向一个函数。看例子:

A)

char * (*fun1)(char * p1,char * p2);

B)

char * *fun2(char * p1,char * p2);

C)

char * fun3(char * p1,char * p2);

看看上面三个表达式分别是什么意思?

C)这很容易,fun3是函数名,p1,p2是参数,其类型为char *型,函数的返回值为char *类型。
B) 也很简单,与C)表达式相比,唯一不同的就是函数的返回值类型为char**,是个二级指针。
A) fun1是函数名吗?回忆一下前面讲解数组指针时的情形。我们说数组指针这么定义或许更清晰:

int (*)[10] p;

再看看A)表达式与这里何其相似!明白了吧。这里fun1不是什么函数名,而是一个指针变量,它指向一个函数。这个函数有两个指针类型的参数,函数的返回值也是一个指针。同样,我们把这个表达式改写一下:

char * (*)(char * p1,char * p2) fun1;

这样子是不是好看一些呢?只可惜编译器不这么想。^_^。


函数指针和一个简单的函数

我们从一个非常简单的”Hello World“函数入手,来见识一下怎样创建一个函数指针。

#include <stdio.h>
 
// 函数原型
void sayHello();
 
//函数实现
void sayHello(){
  printf("hello world\n");
}
 
// main函数调用
int main() {
  sayHello();
}

我们定义了一个名为sayHello的函数,它没有返回值也不接受任何参数。当我们在main函数中调用它的时候,它向屏幕输出出”hello world“。非常简单。接下来,我们改写一下main函数,之前直接调用的sayHello函数,现在改用函数指针来调用它。

int main() {
  void (*sayHelloPtr)() = sayHello;
  (*sayHelloPtr)();
}

第二行void (*sayHelloPtr)()的语法看起来有些奇怪,我们来一步一步分析。

这里,关键字void的作用是说我们创建了一个函数指针,并让它指向了一个返回void(也就是没有返回值)的函数。
就像其他任何指针都必须有一个名称一样,这里sayHelloPtr被当作这个函数指针的名称。
我们用*符号来表示这是一个指针,这跟声明一个指向整数或者字符的指针没有任何区别。
*sayHelloPtr两端的括号是必须的,否则,上述声明变成void *sayHelloPtr(),*会优先跟void结合,变成了一个返回指向void的指针的普通函数的声明。因此,函数指针声明的时候不要忘记加上括号,这非常关键。
参数列表紧跟在指针名之后,这个例子中由于没有参数,所以是一对空括号()。
将上述要点结合起来,void (*syaHelloPtr)()的意义就非常清楚了,这是一个函数指针,它指向一个不接收参数且没有返回值的函数。
在上面的第二行代码,即void (*sayHelloPtr)() = sayHello;,我们将sayHello这个函数名赋给了我们新建的函数指针。关于函数名的更多细节我们会在下文中讨论,现在暂时可以将其看作一个标签,它代表函数的地址,并且可以赋值给函数指针。这就跟语句int *x = &myint;中我们把myint的地址赋给一个指向整数的指针一样。只是当我们考虑函数的时候,我们不需要加上一个取地址符&。简而言之,函数名就是它的地址。接着看第三行,我们用代码'(*sayHelloPtr)();·‘解引用并调用了函数指针。

在第二行被声明之后,sayHelloPtr作为函数指针的名称,跟其他任何指针没有差别,能够储值和赋值。
我们对sayHelloPtr解引用的方式也与其他任何指针一样,即在指针之前使用解引用符*,也就是代码中的*sayHelloPtr。
同样的,我们需要在其两端加上括号,即(*sayHelloPtr),否则它就不被当做一个函数指针。因此,记得声明和解引用的时候都要在两端加上括号。
括号操作符用于C语言中的函数调用,如果有参数参与,就将其放入括号中。这对于函数指针也是相似的,即代码中的(*sayHelloPtr)()。
这个函数没有返回值,也就没有必要将它赋值给任何变量。单独来说,这个调用跟sayHello()没什么两样。
接下来,我们再对函数稍加修改。你会看到函数指针奇怪的语法,以及用调用普通函数的方法来调用赋值后函数指针的现象。

int main() {
void (*sayHelloPtr)() = sayHello;
sayHelloPtr();
}

跟之前一样,我们将sayHello函数赋给函数指针。但是这一次,我们用调用普通函数的方法调用了它。稍后讨论函数名的时候我会解释这一现象,现在只需要知道(*syaHelloPtr)()和syaHelloPtr()是相同的即可。

带参数的函数指针

好了,这一次我们来创建一个新的函数指针吧。它指向的函数仍然不返回任何值,但有了参数。

#include <stdio.h>
 
//函数原型
void subtractAndPrint(int x, int y);
 
//函数实现
void subtractAndPrint(int x, int y) {
  int z = x - y;
  printf("Simon says, the answer is: %d\n", z);
}
 
//main函数调用
int main() {
  void (*sapPtr)(int, int) = subtractAndPrint;
  (*sapPtr)(10, 2);
  sapPtr(10, 2);
}

跟之前一样,代码包括函数原型,函数实现和在main函数中通过函数指针执行的语句。原型和实现中的特征标变了,之前的sayHello函数不接受任何参数,而这次的函数subtractAndPrint接受两个int作为参数。它将两个参数做一次减法,然后输出到屏幕上。

在第14行,我们通过'(*sapPtr)(int, int)'创建了sapPtr这个函数指针,与之前的区别仅仅是用(int, int)代替了原来的空括号。而这与新函数的特征标相符。
在第15行,解引用和执行函数的方式与之前完全相同,只是在括号中加入了两个参数,变成了(10, 2)。
在第16行,我们用调用普通函数的方法调用了函数指针。


带参数且有返回值的函数指针

这一次,我们把subtractAndPrint函数改成一个名为subtract的函数,让它把原本输出到屏幕上的结果作为返回值。

#include <stdio.h>
 
// 函数原型
int subtract(int x, int y);
 
// 函数实现
int subtract(int x, int y) {
  return x - y;
}
 
// main函数调用
int main() {
 int (*subtractPtr)(int, int) = subtract;
 
 int y = (*subtractPtr)(10, 2);
 printf("Subtract gives: %d\n", y);
 
 int z = subtractPtr(10, 2);
 printf("Subtract gives: %d\n", z);
}

这与subtractAndPrint函数非常相似,只是subtract函数返回了一个整数而已,特征标也理所当然的不一样了。

在第13行,我们通过int (*subtractPtr)(int, int)创建了subtractPtr这个函数指针。与上一个例子的区别只是把void换成了int来表示返回值。而这与subtract函数的特征标相符。
在在第15行,解引用和执行这个函数指针,除了将返回值赋值给了y以外,与调用subtractAndPrint没有任何区别。
在第16行,我们向屏幕输出了返回值。
18到19行,我们用调用普通函数的方法调用了函数指针,并且输出了结果。
这跟之前没什么两样,我们只是加上了返回值而已。接下来我们看看另一个稍微复杂点儿的例子——把函数指针作为参数传递给另一个函数。

把函数指针作为参数来传递

我们已经了解过了函数指针声明和执行的各种情况,不论它是否带参数,或者是否有返回值。接下来我们利用一个函数指针来根据不同的输入执行不同的函数。

#include <stdio.h>
 
// 函数原型
int add(int x, int y);
int subtract(int x, int y);
int domath(int (*mathop)(int, int), int x, int y);
 
// 加法 x+ y
int add(int x, init y) {
  return x + y;
}
 
// 减法 x - y
int subtract(int x, int y) {
  return x - y;
}
 
// 根据输入执行函数指针
int domath(int (*mathop)(int, int), int x, int y) {
  return (*mathop)(x, y);
}
 
// main函数调用
int main() {
 
// 用加法调用domath
int a = domath(add, 10, 2);
printf("Add gives: %d\n", a);
 
// 用减法调用domath
int b = domath(subtract, 10, 2);
printf("Subtract gives: %d\n", b);
}

我们来一步一步分析。

我们有两个特征标相同的函数,add和subtract,它们都返回一个整数并接受两个整数作为参数。
在第六行,我们定义了函数int domath(int (*mathop)(int, int), int x, int y)。它第一个参数int (*mathop)(int, int)是一个函数指针,指向返回一个整数并接受两个整数作为参数的函数。这就是我们之前见过的语法,没有任何不同。它的后两个整数参数则作为简单的输入。因此,这是一个接受一个函数指针和两个整数作为参数的函数。
19到21行,domath函数将自己的后两个整数参数传递给函数指针并调用它。当然,也可以像这么调用。mathop(x, y);
27到31行出现了我们没见过的代码。我们用函数名作为参数调用了domath函数。就像我之前说过的,函数名是函数的地址,而且能代替函数指针使用。
main函数调用了两次domath函数,一次用了add,一次用了subtract,并输出了这两次结果。

函数名和地址

既然有约在先,那我们就讨论一下函数名和地址作为结尾吧。一个函数名(或称标签),被转换成了一个指针本身。这表明在函数指针被要求当作输入的地方,就能够使用函数名。这也导致了一些看起来很糟糕的代码却能够正确的运行。瞧瞧下面这个例子。

#include <stdio.h>
 
// 函数原型
void add(char *name, int x, int y);
 
// 加法 x + y
void add(char *name, int x, int y) {
  printf("%s gives: %d\n", name, x + y);
}
 
// main函数调用
int main() {
 
  
// 一些糟糕的函数指针赋值
  void (*add1Ptr)(char*, int, int) = add;
  void (*add2Ptr)(char*, int, int) = *add;
  void (*add3Ptr)(char*, int, int) = &add;
  void (*add4Ptr)(char*, int, int) = **add;
  void (*add5Ptr)(char*, int, int) = ***add;
 
  
// 仍然能够正常运行
  (*add1Ptr)("add1Ptr", 10, 2);
  (*add2Ptr)("add2Ptr", 10, 2);
  (*add3Ptr)("add3Ptr", 10, 2);
  (*add4Ptr)("add4Ptr", 10, 2);
  (*add5Ptr)("add5Ptr", 10, 2);
 
  
// 当然,这也能运行
  add1Ptr("add1PtrFunc", 10, 2);
  add2Ptr("add2PtrFunc", 10, 2);
  add3Ptr("add3PtrFunc", 10, 2);
  add4Ptr("add4PtrFunc", 10, 2);
  add5Ptr("add5PtrFunc", 10, 2);
}

这是一个简单的例子。运行这段代码,你会看到每个函数指针都会执行,只是会收到一些关于字符转换的警告。但是,这些函数指针都能正常工作。

在第15行,add作为函数名,返回这个函数的地址,它被隐式的转换为一个函数指针。我之前提到过,在函数指针被要求当作输入的地方,就能够使用函数名。
在第16行,解引用符作用于add之前,即*add,在返回在这个地址的函数。之后跟函数名一样,它被隐式的转换为一个函数指针。
在第17行,取地址符作用于add之前,即&add,返回这个函数的地址,之后又得到一个函数指针。
18到19行,add不断地解引用自身,不断返回函数名,并被转换为函数指针。到最后,它们的结果都和函数名没有区别。
显然,这段代码不是优秀的实例代码。我们从中收获到了如下知识:其一,函数名会被隐式的转换为函数指针,就像作为参数传递的时候,数组名被隐式的转换为指针一样。在函数指针被要求当作输入的任何地方,都能够使用函数名。其二,解引用符*和取地址符&用在函数名之前基本上都是多余的。


代码注释

作者:喵哥笔记

IDC笔记

学的不仅是技术,更是梦想!