详解Java编程中对象的序列化
Java平台允许我们在内存中创建可复用的Java对象,但一般情况下,只有当JVM处于运行时,这些对象才可能存在,即,这些对象的生命周期不会比JVM的生命周期更长
1. 什么是Java对象序列化
Java平台允许我们在内存中创建可复用的Java对象,但一般情况下,只有当JVM处于运行时,这些对象才可能存在,即,这些对象的生命周期不会比JVM的生命周期更长。但在现实应用中,就可能要求在JVM停止运行之后能够保存(持久化)指定的对象,并在将来重新读取被保存的对象。Java对象序列化就能够帮助我们实现该功能。
使用Java对象序列化,在保存对象时,会把其状态保存为一组字节,在未来,再将这些字节组装成对象。必须注意地是,对象序列化保存的是对象的"状态",即它的成员变量。由此可知,对象序列化不会关注类中的静态变量。
除了在持久化对象时会用到对象序列化之外,当使用RMI(远程方法调用),或在网络中传递对象时,都会用到对象序列化。Java序列化API为处理对象序列化提供了一个标准机制,该API简单易用,在本文的后续章节中将会陆续讲到。
2. 简单示例
在Java中,只要一个类实现了java.io.Serializable接口,那么它就可以被序列化。此处将创建一个可序列化的类Person,本文中的所有示例将围绕着该类或其修改版。
Gender类,是一个枚举类型,表示性别
public enum Gender { MALE, FEMALE }
如果熟悉Java枚举类型的话,应该知道每个枚举类型都会默认继承类java.lang.Enum,而该类实现了Serializable接口,所以枚举类型对象都是默认可以被序列化的。
Person类,实现了Serializable接口,它包含三个字段:name,String类型;age,Integer类型;gender,Gender类型。另外,还重写该类的toString()方法,以方便打印Person实例中的内容。
public class Person implements Serializable { private String name = null; private Integer age = null; private Gender gender = null; public Person() { System.out.println("none-arg constructor"); } public Person(String name, Integer age, Gender gender) { System.out.println("arg constructor"); this.name = name; this.age = age; this.gender = gender; } public String getName() { return name; } public void setName(String name) { this.name = name; } public Integer getAge() { return age; } public void setAge(Integer age) { this.age = age; } public Gender getGender() { return gender; } public void setGender(Gender gender) { this.gender = gender; } @Override public String toString() { return "[" + name + ", " + age + ", " + gender + "]"; } }
SimpleSerial,是一个简单的序列化程序,它先将一个Person对象保存到文件person.out中,然后再从该文件中读出被存储的Person对象,并打印该对象。
public class SimpleSerial { public static void main(String[] args) throws Exception { File file = new File("person.out"); ObjectOutputStream oout = new ObjectOutputStream(new FileOutputStream(file)); Person person = new Person("John", 101, Gender.MALE); oout.writeObject(person); oout.close(); ObjectInputStream oin = new ObjectInputStream(new FileInputStream(file)); Object newPerson = oin.readObject(); // 没有强制转换到Person类型 oin.close(); System.out.println(newPerson); } }
上述程序的输出的结果为:
arg constructor [John, 31, MALE]
此时必须注意的是,当重新读取被保存的Person对象时,并没有调用Person的任何构造器,看起来就像是直接使用字节将Person对象还原出来的。
当Person对象被保存到person.out文件中之后,我们可以在其它地方去读取该文件以还原对象,但必须确保该读取程序的CLASSPATH中包含有Person.class(哪怕在读取Person对象时并没有显示地使用Person类,如上例所示),否则会抛出ClassNotFoundException。
3. Serializable的作用
为什么一个类实现了Serializable接口,它就可以被序列化呢?在上节的示例中,使用ObjectOutputStream来持久化对象,在该类中有如下代码:
private void writeObject0(Object obj, boolean unshared) throws IOException { ... if (obj instanceof String) { writeString((String) obj, unshared); } else if (cl.isArray()) { writeArray(obj, desc, unshared); } else if (obj instanceof Enum) { writeEnum((Enum) obj, desc, unshared); } else if (obj instanceof Serializable) { writeOrdinaryObject(obj, desc, unshared); } else { if (extendedDebugInfo) { throw new NotSerializableException(cl.getName() + "\n" + debugInfoStack.toString()); } else { throw new NotSerializableException(cl.getName()); } } ... }
从上述代码可知,如果被写对象的类型是String,或数组,或Enum,或Serializable,那么就可以对该对象进行序列化,否则将抛出NotSerializableException。
4. 默认序列化机制
如果仅仅只是让某个类实现Serializable接口,而没有其它任何处理的话,则就是使用默认序列化机制。使用默认机制,在序列化对象时,不仅会序列化当前对象本身,还会对该对象引用的其它对象也进行序列化,同样地,这些其它对象引用的另外对象也将被序列化,以此类推。所以,如果一个对象包含的成员变量是容器类对象,而这些容器所含有的元素也是容器类对象,那么这个序列化的过程就会较复杂,开销也较大。
5. 影响序列化
在现实应用中,有些时候不能使用默认序列化机制。比如,希望在序列化过程中忽略掉敏感数据,或者简化序列化过程。下面将介绍若干影响序列化的方法。
5.1 transient关键字
当某个字段被声明为transient后,默认序列化机制就会忽略该字段。此处将Person类中的age字段声明为transient,如下所示,
public class Person implements Serializable { ... transient private Integer age = null; ... }
再执行SimpleSerial应用程序,会有如下输出:
arg constructor [John, null, MALE]
可见,age字段未被序列化。
5.2 writeObject()方法与readObject()方法
对于上述已被声明为transitive的字段age,除了将transitive关键字去掉之外,是否还有其它方法能使它再次可被序列化?方法之一就是在Person类中添加两个方法:writeObject()与readObject(),如下所示:
public class Person implements Serializable { ... transient private Integer age = null; ... private void writeObject(ObjectOutputStream out) throws IOException { out.defaultWriteObject(); out.writeInt(age); } private void readObject(ObjectInputStream in) throws IOException, ClassNotFoundException { in.defaultReadObject(); age = in.readInt(); } }
在writeObject()方法中会先调用ObjectOutputStream中的defaultWriteObject()方法,该方法会执行默认的序列化机制,如5.1节所述,此时会忽略掉age字段。然后再调用writeInt()方法显示地将age字段写入到ObjectOutputStream中。readObject()的作用则是针对对象的读取,其原理与writeObject()方法相同。再次执行SimpleSerial应用程序,则又会有如下输出:
arg constructor [John, 31, MALE]
必须注意地是,writeObject()与readObject()都是private方法,那么它们是如何被调用的呢?毫无疑问,是使用反射。详情可以看看ObjectOutputStream中的writeSerialData方法,以及ObjectInputStream中的readSerialData方法。
5.3 Externalizable接口
无论是使用transient关键字,还是使用writeObject()和readObject()方法,其实都是基于Serializable接口的序列化。JDK中提供了另一个序列化接口--Externalizable,使用该接口之后,之前基于Serializable接口的序列化机制就将失效。此时将Person类作如下修改,
public class Person implements Externalizable { private String name = null; transient private Integer age = null; private Gender gender = null; public Person() { System.out.println("none-arg constructor"); } public Person(String name, Integer age, Gender gender) { System.out.println("arg constructor"); this.name = name; this.age = age; this.gender = gender; } private void writeObject(ObjectOutputStream out) throws IOException { out.defaultWriteObject(); out.writeInt(age); } private void readObject(ObjectInputStream in) throws IOException, ClassNotFoundException { in.defaultReadObject(); age = in.readInt(); } @Override public void writeExternal(ObjectOutput out) throws IOException { } @Override public void readExternal(ObjectInput in) throws IOException, ClassNotFoundException { } ... }
此时再执行SimpleSerial程序之后会得到如下结果:
arg constructor none-arg constructor [null, null, null]
从该结果,一方面,可以看出Person对象中任何一个字段都没有被序列化。另一方面,如果细心的话,还可以发现这此次序列化过程调用了Person类的无参构造器。
Externalizable继承于Serializable,当使用该接口时,序列化的细节需要由程序员去完成。如上所示的代码,由于writeExternal()与readExternal()方法未作任何处理,那么该序列化行为将不会保存/读取任何一个字段。这也就是为什么输出结果中所有字段的值均为空。
另外,使用Externalizable进行序列化时,当读取对象时,会调用被序列化类的无参构造器去创建一个新的对象,然后再将被保存对象的字段的值分别填充到新对象中。这就是为什么在此次序列化过程中Person类的无参构造器会被调用。由于这个原因,实现Externalizable接口的类必须要提供一个无参的构造器,且它的访问权限为public。
对上述Person类进行进一步的修改,使其能够对name与age字段进行序列化,但忽略掉gender字段,如下代码所示:
public class Person implements Externalizable { private String name = null; transient private Integer age = null; private Gender gender = null; public Person() { System.out.println("none-arg constructor"); } public Person(String name, Integer age, Gender gender) { System.out.println("arg constructor"); this.name = name; this.age = age; this.gender = gender; } private void writeObject(ObjectOutputStream out) throws IOException { out.defaultWriteObject(); out.writeInt(age); } private void readObject(ObjectInputStream in) throws IOException, ClassNotFoundException { in.defaultReadObject(); age = in.readInt(); } @Override public void writeExternal(ObjectOutput out) throws IOException { out.writeObject(name); out.writeInt(age); } @Override public void readExternal(ObjectInput in) throws IOException, ClassNotFoundException { name = (String) in.readObject(); age = in.readInt(); } ... }
执行SimpleSerial之后会有如下结果:
arg constructor none-arg constructor [John, 31, null]
5.4 readResolve()方法
当我们使用Singleton模式时,应该是期望某个类的实例应该是唯一的,但如果该类是可序列化的,那么情况可能略有不同。此时对第2节使用的Person类进行修改,使其实现Singleton模式,如下所示:
public class Person implements Serializable { private static class InstanceHolder { private static final Person instatnce = new Person("John", 31, Gender.MALE); } public static Person getInstance() { return InstanceHolder.instatnce; } private String name = null; private Integer age = null; private Gender gender = null; private Person() { System.out.println("none-arg constructor"); } private Person(String name, Integer age, Gender gender) { System.out.println("arg constructor"); this.name = name; this.age = age; this.gender = gender; } ... } 同时要修改SimpleSerial应用,使得能够保存/获取上述单例对象,并进行对象相等性比较,如下代码所示: public class SimpleSerial { public static void main(String[] args) throws Exception { File file = new File("person.out"); ObjectOutputStream oout = new ObjectOutputStream(new FileOutputStream(file)); oout.writeObject(Person.getInstance()); // 保存单例对象 oout.close(); ObjectInputStream oin = new ObjectInputStream(new FileInputStream(file)); Object newPerson = oin.readObject(); oin.close(); System.out.println(newPerson); System.out.println(Person.getInstance() == newPerson); // 将获取的对象与Person类中的单例对象进行相等性比较 } }
执行上述应用程序后会得到如下结果:
arg constructor [John, 31, MALE] false
值得注意的是,从文件person.out中获取的Person对象与Person类中的单例对象并不相等。为了能在序列化过程仍能保持单例的特性,可以在Person类中添加一个readResolve()方法,在该方法中直接返回Person的单例对象,如下所示:
public class Person implements Serializable { private static class InstanceHolder { private static final Person instatnce = new Person("John", 31, Gender.MALE); } public static Person getInstance() { return InstanceHolder.instatnce; } private String name = null; private Integer age = null; private Gender gender = null; private Person() { System.out.println("none-arg constructor"); } private Person(String name, Integer age, Gender gender) { System.out.println("arg constructor"); this.name = name; this.age = age; this.gender = gender; } private Object readResolve() throws ObjectStreamException { return InstanceHolder.instatnce; } ... }
再次执行本节的SimpleSerial应用后将如下输出:
arg constructor [John, 31, MALE] true
无论是实现Serializable接口,或是Externalizable接口,当从I/O流中读取对象时,readResolve()方法都会被调用到。实际上就是用readResolve()中返回的对象直接替换在反序列化过程中创建的对象。
6.一些高级用法
该说的都在注释中说完了。直接给程序吧。
package test.javaPuzzler.p5; import java.io.*; import java.io.ObjectInputStream.GetField; import java.io.ObjectOutputStream.PutField; // 一个类实现Serializable来表明自己可以被序列化; // 有一点需要特别注意的是: // 如果子类实现了Serializable,而父类没有,则父类不会被序列化; public class SerializableObject implements Serializable { // 生成的序列化版本号会因为编译环境,声明的类名,成员名称和数量的变化而不同; // 也就是说这个版本号一定程度上记录着类的定义性的信息,如果类的定义变化了,最好重新生成版本号; // 如果新的代码使用了旧的版本号,则在反序列化的时候,可以兼容读取旧类的字节码而不会报错; private static final long serialVersionUID = 9038542591452547920L; public String name; public String password; // 如果你不希望某个非静态成员被序列化,可以用transient来修饰它; public transient int age; // 静态成员不会被序列化,因为序列化保存的是实例的状态信息,而静态成员是类的状态信息; public static int version = 1; public SerializableObject(String name, String password) { this.name = name; this.password = password; } // 每个类可以写一个writeObject方法,这个方法将会负责该类自身的序列化过程; // 比如对于敏感信息如password,可以加密之后再序列化; // 这个过程需要用到PutField,它可以指定哪些域会被序列化,怎么序列化(比如加密); // 如果没有定义这个方法,将会调用ObjectOutputStream 的 defaultWriteObject; // 你可以注释掉readObject方法,然后运行测试用例来测试密码是否被加密; private void writeObject(ObjectOutputStream out) throws IOException { PutField putFields = out.putFields(); putFields.put("name", name); // 模拟加密密码 putFields.put("password", "thePassword:" + password); out.writeFields(); } // 每个类可以写一个readObject方法,该方法负责该类自身的反序列化过程; // 比如对序列化时加密后的密码解密; // 这个过程需要用到GetField,他可以具体地读取每个域;或执行解密动作等等; // 如果没有定义这个方法,将会调用ObjectInputStream 的 defaultReadObject; private void readObject(ObjectInputStream in) throws ClassNotFoundException, IOException { GetField readFields = in.readFields(); // 读取到成员的值之后,直接赋给该域,即完成该域的反序列化; name = (String) readFields.get("name", "defaultName"); // 模拟解密密码 String encPassword = (String) readFields.get("password", "thePassword:defaultValue"); password = encPassword.split(":")[1]; } // 序列化 // 主要用到ObjectOutputStream; public void save() throws IOException { FileOutputStream fout = new FileOutputStream("e:\\obj"); ObjectOutputStream oout = new ObjectOutputStream(fout); oout.writeObject(this); oout.close(); fout.close(); } // 反序列化 // 主要用到ObjectInputStream public static SerializableObject load() throws IOException, ClassNotFoundException { FileInputStream fin = new FileInputStream("e:\\obj"); ObjectInputStream oin = new ObjectInputStream(fin); Object o = oin.readObject(); return (SerializableObject) o; } @Override public String toString() { return "name: " + name + ", password: " + password; } // 测试用例 public static void main(String[] args) throws IOException, ClassNotFoundException { SerializableObject so = new SerializableObject( "http://blog.csdn.net/sunxing007", "123456"); so.save(); System.out.println(so); System.out.println(SerializableObject.load()); } }
序列化会对单例模式不利, 因为可以通过反序列化而破坏单例. 这个时候就要请出readResolve这个方法了. 比如下面的程序:
public class Dog extends Exception { //private static final long serialVersionUID = -7156412195888553079L; public static final Dog INSTANCE = new Dog(); private Dog() { } public String toString() { return "Woof"; } // 通过readResolve, 保证反序列化的时候能完全自主地处理返回对象. private Object readResolve(){ return INSTANCE; } public static void main(String[] args) throws IOException, ClassNotFoundException{ Dog d = Dog.INSTANCE; ByteArrayOutputStream bro = new ByteArrayOutputStream(); ObjectOutputStream oout = new ObjectOutputStream(bro); oout.writeObject(d); ObjectInputStream oin = new ObjectInputStream(new ByteArrayInputStream(bro.toByteArray())); Dog d1 = (Dog)oin.readObject(); System.out.println(d1==d); } }